Tumor organoid biobank-new platform for medical research

Tumor organoid biobank-new platform for medical research
  • Pan, W. et al. The molecular subtypes of triple negative breast cancer were defined and a ligand-receptor pair score model was constructed by comprehensive analysis of ligand-receptor pairs. Front. Immunol. 13, 982486. https://doi.org/10.3389/fimmu.2022.982486 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Cross-talk of four types of RNA modification proteins with adenosine reveals the landscape of multivariate prognostic patterns in breast cancer. Front. Genet. 13, 943378. https://doi.org/10.3389/fgene.2022.943378 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sweed, D. et al. The clinicopathological and prognostic factors of hepatocellular carcinoma: A 10-year tertiary center experience in Egypt. World J. Surg. Oncol. 20, 298. https://doi.org/10.1186/s12957-022-02764-2 (2022).

    Article 

    Google Scholar
     

  • Cheng, C., Feng, X., Li, X. & Wu, M. Robust analysis of cancer heterogeneity for high-dimensional data. Stat. Med. 41, 5448–5462. https://doi.org/10.1002/sim.9578 (2022).

    Article 

    Google Scholar
     

  • Abdelraouf, E. M. et al. Annexin A2 (AnxA2) association with the clinicopathological data in different breast cancer subtypes: A possible role for AnxA2 in tumor heterogeneity and cancer progression. Life Sci. 308, 120967. https://doi.org/10.1016/j.lfs.2022.120967 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Elbadawy, M. et al. Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids. Biomed. Pharmacother. 142, 112043. https://doi.org/10.1016/j.biopha.2021.112043 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Elbadawy, M. et al. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism. Cancer Biol. Ther. 22, 357–371. https://doi.org/10.1080/15384047.2021.1919004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338. https://doi.org/10.1016/j.cell.2014.12.021 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lancaster, M. A. & Huch, M. Disease modelling in human organoids. Dis. Model Mech. 12, dmm039347. https://doi.org/10.1242/dmm.039347 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. et al. Air pollution, genetic factors, and the risk of lung cancer: A prospective study in the UK biobank. Am. J. Respir. Crit. Care Med. 204, 817–825. https://doi.org/10.1164/rccm.202011-4063OC (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188-204.e22. https://doi.org/10.1016/j.cell.2019.11.036 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Said, M. A., Verweij, N. & van der Harst, P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank study. JAMA Cardiol. 3, 693–702. https://doi.org/10.1001/jamacardio.2018.1717 (2018).

    Article 

    Google Scholar
     

  • Muller, D. C., Johansson, M. & Brennan, P. Lung cancer risk prediction model incorporating lung function: Development and validation in the UK Biobank prospective cohort study. J. Clin. Oncol. 35, 861–869. https://doi.org/10.1200/JCO.2016.69.2467 (2017).

    Article 

    Google Scholar
     

  • Wang, Q. L., Ness-Jensen, E., Santoni, G., Xie, S. H. & Lagergren, J. Development and validation of a risk prediction model for esophageal squamous cell carcinoma using cohort studies. Am. J. Gastroenterol. 116, 683–691. https://doi.org/10.14309/ajg.0000000000001094 (2021).

    Article 

    Google Scholar
     

  • Takahashi, Y. et al. A refined culture system for human induced pluripotent stem cell-derived intestinal epithelial organoids. Stem Cell Rep. 10, 314–328. https://doi.org/10.1016/j.stemcr.2017.11.004 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Noguchi, T. K. et al. Generation of stomach tissue from mouse embryonic stem cells. Nat. Cell Biol. 17, 984–993. https://doi.org/10.1038/ncb3200 (2015).

    Article 
    CAS 

    Google Scholar
     

  • McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928. https://doi.org/10.1038/nprot.2011.410 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265. https://doi.org/10.1038/nature07935 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945. https://doi.org/10.1016/j.cell.2015.03.053 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926. https://doi.org/10.1126/science.aao2774 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838. https://doi.org/10.1016/j.stem.2016.04.003 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kraiczy, J. et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut 68, 49–61. https://doi.org/10.1136/gutjnl-2017-314817 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zachos, N. C. et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291, 3759–3766. https://doi.org/10.1074/jbc.R114.635995 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Saksena, S. Nonpharmacologic therapy for tachyarrhythmias: The tower of Babel revisited?. Pacing Clin. Electrophysiol. 11, 93–97. https://doi.org/10.1111/j.1540-8159.1988.tb03932.x (1988).

    Article 
    CAS 

    Google Scholar
     

  • Xu, R., Zhou, X., Wang, S. & Trinkle, C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol. Ther. 218, 107668. https://doi.org/10.1016/j.pharmthera.2020.107668 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84. https://doi.org/10.1126/scitranslmed.aad8278 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sugimoto, S. et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell. 22, 171-176.e5. https://doi.org/10.1016/j.stem.2017.11.012 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15, 3380–3409. https://doi.org/10.1038/s41596-020-0379-4 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maenhoudt, N. et al. Developing organoids from ovarian cancer as experimental and preclinical models. Stem Cell Rep. 14, 717–729. https://doi.org/10.1016/j.stemcr.2020.03.004 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z., Nie, B., Zhai, W. & Hu, Z. Delineating the longitudinal tumor evolution using organoid models. J. Genet. Genom. 48, 560–570. https://doi.org/10.1016/j.jgg.2021.06.010 (2021).

    Article 

    Google Scholar
     

  • Wang, Z. et al. The Fibrillin-1/VEGFR2/STAT2 signaling axis promotes chemoresistance via modulating glycolysis and angiogenesis in ovarian cancer organoids and cells. Cancer Commun. 42, 245–265. https://doi.org/10.1002/cac2.12274 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rao, S., Hossain, T. & Mahmoudi, T. 3D human liver organoids: An in vitro platform to investigate HBV infection, replication and liver tumorigenesis. Cancer Lett. 506, 35–44. https://doi.org/10.1016/j.canlet.2021.02.024 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoshida, S., Miwa, H., Kawachi, T., Kume, S. & Takahashi, K. Generation of intestinal organoids derived from human pluripotent stem cells for drug testing. Sci. Rep. 10, 5989. https://doi.org/10.1038/s41598-020-63151-z (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • d’Aldebert, E. et al. Characterization of human colon organoids from inflammatory bowel disease patients. Front. Cell Dev. Biol. 8, 363. https://doi.org/10.3389/fcell.2020.00363 (2020).

    Article 

    Google Scholar
     

  • Min, S., Kim, S. & Cho, S. W. Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp. Mol. Med. 52, 227–237. https://doi.org/10.1038/s12276-020-0386-0 (2020).

    Article 
    CAS 

    Google Scholar
     

  • den Hertog, J. & de Laat, S. W. Hubrecht Institute Centennial: From embryos to stem cells. Dev. Biol. 428, 261–263. https://doi.org/10.1016/j.ydbio.2017.02.004 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rabouille, C. & Deschamps, J. On the shoulders of Hubrecht: From embryos to stem cells. Dev. Biol. 428, 264–272. https://doi.org/10.1016/j.ydbio.2016.10.005 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Reddelle, A. K. Innovation in brain tumor treatment: A nurse perspective. Cureus 13, e20037. https://doi.org/10.7759/cureus.20037 (2021).

    Article 

    Google Scholar
     

  • Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20, 1–86. https://doi.org/10.1093/neuonc/noy131 (2018).

    Article 

    Google Scholar
     

  • Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C. & Barnholtz-Sloan, J. S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 23, 1–105. https://doi.org/10.1093/neuonc/noab200 (2018).

    Article 

    Google Scholar
     

  • Yang, P. et al. Management and survival rates in patients with glioma in China (2004–2010): A retrospective study from a single-institution. J. Neurooncol. 113, 259–266. https://doi.org/10.1007/s11060-013-1103-9 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Helguera, G. et al. Visualization and quantification of cytotoxicity mediated by antibodies using imaging flow cytometry. J. Immunol. Methods 368, 54–63. https://doi.org/10.1016/j.jim.2011.03.003 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Darmanis, S. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410. https://doi.org/10.1016/j.celrep.2017.10.030 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835-849.e21. https://doi.org/10.1016/j.cell.2019.06.024 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401. https://doi.org/10.1126/science.1254257 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mandel, J. J. et al. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro Oncol. 20, 113–122. https://doi.org/10.1093/neuonc/nox144 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Abdullah, K. G. et al. Establishment of patient-derived organoid models of lower-grade glioma. Neuro Oncol. 24, 612–623. https://doi.org/10.1093/neuonc/noab273 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Si, Y. F. et al. A study on the value of narrow-band imaging (NBI) for the general investigation of a high-risk population of nasopharyngeal carcinoma (NPC). World J. Surg. Oncol. 16, 126. https://doi.org/10.1186/s12957-018-1423-5 (2018).

    Article 

    Google Scholar
     

  • Chen, Y. P. et al. Nasopharyngeal carcinoma. Lancet 394, 64–80. https://doi.org/10.1016/S0140-6736(19)30956-0 (2019).

    Article 

    Google Scholar
     

  • Thamboo, A., Patel, V. S. & Hwang, P. H. 5-year outcomes of salvage endoscopic nasopharyngectomy for recurrent nasopharyngeal carcinoma. J. Otolaryngol. Head Neck Surg. 50, 12. https://doi.org/10.1186/s40463-020-00482-x (2021).

    Article 

    Google Scholar
     

  • Chen, W. et al. Long noncoding RNA cytoskeleton regulator RNA promotes cell invasion and metastasis by titrating miR-613 to regulate ANXA2 in nasopharyngeal carcinoma. Cancer Med. 9, 1209–1219. https://doi.org/10.1002/cam4.2778 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. W. et al. Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma. Ann. Transl. Med. 10, 526. https://doi.org/10.21037/atm-22-1076 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. H. N. et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut 69, 2165–2179. https://doi.org/10.1136/gutjnl-2019-320019 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17-26.e6. https://doi.org/10.1016/j.stem.2019.10.010 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Geevimaan, K. et al. Patient-derived organoid serves as a platform for personalized chemotherapy in advanced colorectal cancer patients. Front. Oncol. 12, 883437. https://doi.org/10.3389/fonc.2022.883437 (2022).

    Article 

    Google Scholar
     

  • Mo, S. et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy. Adv. Sci. 9, e2204097. https://doi.org/10.1002/advs.202204097 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Laoukili, J. et al. Peritoneal metastases from colorectal cancer belong to Consensus Molecular Subtype 4 and are sensitised to oxaliplatin by inhibiting reducing capacity. Br. J. Cancer 126, 1824–1833. https://doi.org/10.1038/s41416-022-01742-5 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Usui, T. et al. Hedgehog signals mediate anti-cancer drug resistance in three-dimensional primary colorectal cancer organoid culture. Int. J. Mol. Sci. 19, 1098. https://doi.org/10.3390/ijms19041098 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yao, L. et al. Application of tumoroids derived from advanced colorectal cancer patients to predict individual response to chemotherapy. J. Chemother. https://doi.org/10.1080/1120009X.2022.2045827 (2022).

    Article 

    Google Scholar
     

  • Herpers, B. et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nat. Cancer 3, 418–436. https://doi.org/10.1038/s43018-022-00359-0 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882-897.e11. https://doi.org/10.1016/j.stem.2018.09.016 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schütte, M. et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat. Commun. 8, 14262. https://doi.org/10.1038/ncomms14262 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mohammadian, M., Allah Bakeshei, K. & Mohammadian-Hafshejani, A. International epidemiology of liver cancer: Geographical distribution, secular trends and predicting the future. J. Prev. Med. Hyg. 61, E259–E289. https://doi.org/10.15167/2421-4248/jpmh2020.61.2.1244 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376. https://doi.org/10.1016/j.celrep.2018.07.001 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rawla, P., Sunkara, T. & Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol. 10, 10–27. https://doi.org/10.14740/wjon1166 (2019).

    Article 

    Google Scholar
     

  • Saad, A. M., Turk, T., Al-Husseini, M. J. & Abdel-Rahman, O. Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer 18, 688. https://doi.org/10.1186/s12885-018-4610-4 (2018).

    Article 

    Google Scholar
     

  • Patel, N., Khorolsky, C. & Benipal, B. Incidence of pancreatic adenocarcinoma in the United States from 2001 to 2015: A United States cancer statistics analysis of 50 states. Cureus 10, e3796. https://doi.org/10.7759/cureus.3796 (2018).

    Article 

    Google Scholar
     

  • Gordon-Dseagu, V. L., Devesa, S. S., Goggins, M. & Stolzenberg-Solomon, R. Pancreatic cancer incidence trends: Evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int. J. Epidemiol. 47, 427–439. https://doi.org/10.1093/ije/dyx232 (2018).

    Article 

    Google Scholar
     

  • Wong, M. C. S. et al. Global temporal patterns of pancreatic cancer and association with socioeconomic development. Sci. Rep. 7, 3165. https://doi.org/10.1038/s41598-017-02997-2 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farrell, J. J. Prevalence, diagnosis and management of pancreatic cystic neoplasms: Current status and future directions. Gut Liver 9, 571–589. https://doi.org/10.5009/gnl15063 (2015).

    Article 

    Google Scholar
     

  • Basar, O. & Brugge, W. R. My treatment approach: Pancreatic cysts. Mayo Clin. Proc. 92, 1519–1531. https://doi.org/10.1016/j.mayocp.2017.06.017 (2017).

    Article 

    Google Scholar
     

  • Beato, F. et al. Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. Lab. Invest. 101, 204–217. https://doi.org/10.1038/s41374-020-00494-1 (2021).

    Article 

    Google Scholar
     

  • Huang, B. et al. Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. J. Pathol. 252, 252–262. https://doi.org/10.1002/path.5515 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hirt, C. K. et al. Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label treatment. Cell Genom. 2, 100095. https://doi.org/10.1016/j.xgen.2022.100095 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Demyan, L. et al. Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy. Ann. Surg. 276, 450–462. https://doi.org/10.1097/SLA.0000000000005558 (2022).

    Article 

    Google Scholar
     

  • Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl. Acad. Sci. U S A 116, 26580–26590. https://doi.org/10.1073/pnas.1911273116 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vaes, R. D. W. et al. Generation and initial characterization of novel tumour organoid models to study human pancreatic cancer-induced cachexia. J. Cachexia Sarcopenia Muscle 11, 1509–1524. https://doi.org/10.1002/jcsm.12627 (2020).

    Article 

    Google Scholar
     

  • Kawasaki, K. et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell 183, 1420-1435.e21. https://doi.org/10.1016/j.cell.2020.10.023 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bray, F. et al. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424. https://doi.org/10.3322/caac.21492(2018) (2018).

    Article 

    Google Scholar
     

  • Sun, X., Bao, J. & Shao, Y. Mathematical modeling of therapy-induced cancer drug resistance: Connecting cancer mechanisms to population survival rates. Sci. Rep. 6, 22498. https://doi.org/10.1038/srep22498 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaur, P., Garg, T., Rath, G., Murthy, R. S. & Goyal, A. K. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv. 23, 727–738. https://doi.org/10.3109/10717544.2014.935530 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Establishment of patient-derived tumor spheroids for non-small cell lung cancer. PLoS ONE 13, e0194016. https://doi.org/10.1371/journal.pone.0194016 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. Y. et al. Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin. Cancer Res. 27, 4397–4409. https://doi.org/10.1158/1078-0432.CCR-20-5026 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. F. et al. Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma 67, 430–437. https://doi.org/10.4149/neo_2020_190417N346 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Calandrini, C. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11, 1310. https://doi.org/10.1038/s41467-020-15155-6 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810. https://doi.org/10.1016/S0140-6736(16)30512-8 (2016).

    Article 

    Google Scholar
     

  • Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41. https://doi.org/10.1038/nrc3817 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lerner, S. P. et al. Summary and recommendations from the national cancer institute’s clinical trials planning meeting on novel therapeutics for non-muscle invasive bladder cancer. Bladder Cancer 2, 165–202. https://doi.org/10.3233/BLC-160053 (2016).

    Article 

    Google Scholar
     

  • Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515-528.e17. https://doi.org/10.1016/j.cell.2018.03.017 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Weber, C. A biobank for bladder cancer. Nat. Cell Biol. 20, 634. https://doi.org/10.1038/s41556-018-0114-3 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mullenders, J. et al. Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc. Natl. Acad. Sci. U S A 116, 4567–4574. https://doi.org/10.1073/pnas.1803595116 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elbadawy, M. et al. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Sci. 110, 2806–2821. https://doi.org/10.1111/cas.14118 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Elbadawy, M. et al. Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed. Pharmacother. 151, 113105. https://doi.org/10.1016/j.biopha.2022.113105 (2022).

    Article 

    Google Scholar
     

  • Nuhn, P. et al. Update on systemic prostate cancer therapies: Management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur. Urol. 75, 88–99. https://doi.org/10.1016/j.eururo.2018.03.028 (2019).

    Article 

    Google Scholar
     

  • Beshiri, M. L. et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin. Cancer Res. 24, 4332–4345. https://doi.org/10.1158/1078-0432.CCR-18-0409 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lõhmussaar, K. et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell 28, 1380-1396.e6. https://doi.org/10.1016/j.stem.2021.03.012 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47. https://doi.org/10.1038/nature14415 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262. https://doi.org/10.1038/nm.3802 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ferlay, J. et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386. https://doi.org/10.1002/ijc.29210 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, L. et al. A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nat. Commun. 11, 822. https://doi.org/10.1038/s41467-020-14551-2 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • DeSantis, C. E. et al. Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451. https://doi.org/10.3322/caac.21583 (2019).

    Article 

    Google Scholar
     

  • Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54. https://doi.org/10.1038/nature17676 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dekkers, J. F. et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat. Protoc. 16, 1936–1965. https://doi.org/10.1038/s41596-020-00474-1 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373-386.e10. https://doi.org/10.1016/j.cell.2017.11.010 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mazzucchelli, S. et al. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol. Proced. Online 21, 12. https://doi.org/10.1186/s12575-019-0099-8 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shu, D. et al. Organoids from patient biopsy samples can predict the response of BC patients to neoadjuvant chemotherapy. Ann. Med. 54, 2581–2597. https://doi.org/10.1080/07853890.2022.2122550 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Genomic characteristics of triple-negative breast cancer nominate molecular subtypes that predict chemotherapy response. Mol. Cancer Res. 18, 253–263. https://doi.org/10.1158/1541-7786.MCR-19-0453 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bhatia, S. et al. Patient-derived triple-negative breast cancer organoids provide robust model systems that recapitulate tumor intrinsic characteristics. Cancer Res. 82, 1174–1192. https://doi.org/10.1158/0008-5472.CAN-21-2807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Francies, H. E., Barthorpe, A., McLaren-Douglas, A., Barendt, W. J. & Garnett, M. J. Drug sensitivity assays of human cancer organoid cultures. Methods Mol. Biol. 1576, 339–351. https://doi.org/10.1007/7651_2016_10 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. D., Xia, B. R., Jin, M. Z. & Lou, G. Organoid of ovarian cancer: Genomic analysis and drug screening. Clin. Transl. Oncol. 22, 1240–1251. https://doi.org/10.1007/s12094-019-02276-8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pasch, C. A. et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin. Cancer Res. 25, 5376–5387. https://doi.org/10.1158/1078-0432.CCR-18-3590 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kong, J. et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat. Commun. 11, 5485. https://doi.org/10.1038/s41467-020-19313-8 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25(10), 1607–1614. https://doi.org/10.1038/s41591-019-0584-2 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chew, N. J. et al. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Res. 23, 82. https://doi.org/10.1186/s13058-021-01461-4 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ding, S. et al. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 29, 905-917.e6. https://doi.org/10.1016/j.stem.2022.04.006 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, C. et al. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nat. Commun. 13, 3501. https://doi.org/10.1038/s41467-022-31197-4 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinelli, I. et al. Brain and retinal organoids for disease modeling: The importance of in vitro blood-brain and retinal barriers studies. Cells 11, 1120. https://doi.org/10.3390/cells11071120 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jabs, J. et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations. Mol. Syst. Biol. 13, 955. https://doi.org/10.15252/msb.20177697 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960–965. https://doi.org/10.1126/science.aaw7894 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Michl, J., Park, K. C. & Swietach, P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2, 144. https://doi.org/10.1038/s42003-019-0393-7 (2019).

    Article 

    Google Scholar
     

  • Gonzalez-Exposito, R. et al. CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J. Immunother. Cancer 7, 101. https://doi.org/10.1186/s40425-019-0575-3 (2019).

    Article 

    Google Scholar
     

  • Zhao, H., Jiang, E. & Shang, Z. 3D co-culture of cancer-associated fibroblast with oral cancer organoids. J. Dent. Res. 100, 201–208. https://doi.org/10.1177/0022034520956614 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Staab, J. F., Lemme-Dumit, J. M., Latanich, R., Pasetti, M. F. & Zachos, N. C. Co-culture system of human enteroids/colonoids with innate immune cells. Curr. Protoc. Immunol. 131, e113. https://doi.org/10.1002/cpim.113 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Morgan, K. M., Riedlinger, G. M., Rosenfeld, J., Ganesan, S. & Pine, S. R. Patient-derived xenograft models of non-small cell lung cancer and their potential utility in personalized medicine. Front. Oncol. 7, 2. https://doi.org/10.3389/fonc.2017.00002 (2017).

    Article 

    Google Scholar
     

  • Luo, X. et al. Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 132, 461–472. https://doi.org/10.1016/j.actbio.2020.12.037 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785. https://doi.org/10.1038/nbt.2958 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, F. et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6, 204–212. https://doi.org/10.1002/biot.201000340 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7(1), 8837. https://doi.org/10.1038/s41598-017-08879-x (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buqué, A. & Galluzzi, L. Modeling tumor immunology and immunotherapy in mice. Trends Cancer 4, 599–601. https://doi.org/10.1016/j.trecan.2018.07.003 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 182, 85-97.e16. https://doi.org/10.1016/j.cell.2020.05.028 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Curvello, R., Alves, D., Abud, H. E. & Garnier, G. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater. Sci. Eng. C 124, 112051. https://doi.org/10.1016/j.msec.2021.112051 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nagle, P. W., Plukker, J. T. M., Muijs, C. T., van Luijk, P. & Coppes, R. P. Patient-derived tumor organoids for prediction of cancer treatment response. Semin. Cancer Biol. 53, 258–264. https://doi.org/10.1016/j.semcancer.2018.06.005 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hirokawa, Y. et al. Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine. Commun. Biol. 4, 1067. https://doi.org/10.1038/s42003-021-02607-y (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787-793.e6. https://doi.org/10.1016/j.stem.2018.11.016 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hoffmann, K. et al. Stable expansion of high-grade serous ovarian cancer organoids requires a low-Wnt environment. EMBO J. 39, e104013. https://doi.org/10.15252/embj.2019104013 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Utta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410. https://doi.org/10.1016/j.molmed.2017.02.007 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lensink, M. A. et al. Organoids for personalized treatment of Cystic Fibrosis: Professional perspectives on the ethics and governance of organoid biobanking. J. Cyst Fibros. 20, 443–451. https://doi.org/10.1016/j.jcf.2020.11.015 (2021).

    Article 

    Google Scholar
     

  • Lensink, M. A., Boers, S. N., Gulmans, V. A., Jongsma, K. R. & Bredenoord, A. L. Mini-gut feelings: Perspectives of people with cystic fibrosis on the ethics and governance of organoid biobanking. Pers. Med. 18, 241–254. https://doi.org/10.2217/pme-2020-01 (2021).

    Article 

    Google Scholar